Tablica integrala

More
9 years 5 months ago #28 by Necko
Tablica integrala was created by Necko
OSNOVNA PRAVILA INTEGRIRANJA:


[math]\int af(x)\,dx = a\int f(x)\,dx \qquad\mbox{(}a \mbox{ konstanta)}\,\![/math]

[math]\int [f(x) + g(x)]\,dx = \int f(x)\,dx + \int g(x)\,dx[/math]

[math]\int f(x)g(x)\,dx = f(x)\int g(x)\,dx - \int \left[f'(x) \left(\int g(x)\,dx\right)\right]\,dx[/math]

[math]\int [f(x)]^n f'(x)\,dx = {[f(x)]^{n+1} \over n+1} + C \qquad\mbox{(za } n\neq -1\mbox{)}\,\! [/math]

[math]\int {f'(x)\over f(x)}\,dx= \ln{\left|f(x)\right|} + C [/math]

[math]\int {f'(x) f(x)}\,dx= {1 \over 2} [ f(x) ]^2 + C [/math]



INTEGRALI PROSTIH FUNKCIJA


Racionalne funkcije:

[math]\int \,{\rm d}x = x + C[/math]
[math]\int x^n\,{\rm d}x = \frac{x^{n+1}}{n+1} + C\qquad\mbox{ za }n \ne -1[/math]
[math]\int {dx \over x} = \ln{\left|x\right|} + C[/math]
[math]\int {dx \over {a^2+x^2}} = {1 \over a}\arctan {x \over a} + C[/math]


Iracionalne funkcije:

[math]\int {dx \over \sqrt{a^2-x^2}} = \sin^{-1} {x \over a} + C[/math]
[math]\int {-dx \over \sqrt{a^2-x^2}} = \cos^{-1} {x \over a} + C[/math]
[math]\int {dx \over x \sqrt{x^2-a^2}} = {1 \over a} \sec^{-1} {|x| \over a} + C[/math]


Logaritmi:

[math]\int \ln {x}\,dx = x \ln {x} - x + C[/math]
[math]\int \log_b {x}\,dx = x\log_b {x} - x\log_b {e} + C[/math]


Eksponencijalne funkcije:

[math]\int e^x\,dx = e^x + C[/math]
[math]\int a^x\,dx = \frac{a^x}{\ln{a}} + C[/math]


Trigonometrijske funkcije:

[math]\int \sin{x}\, dx = -\cos{x} + C[/math]
[math]\int \cos{x}\, dx = \sin{x} + C[/math]
[math]\int \tan{x} \, dx = -\ln{\left| \cos {x} \right|} + C[/math]
[math]\int \cot{x} \, dx = \ln{\left| \sin{x} \right|} + C[/math]
[math]\int \sec{x} \, dx = \ln{\left| \sec{x} + \tan{x}\right|} + C[/math]
[math]\int \csc{x} \, dx = \ln{\left| \csc{x} - \cot{x}\right|} + C[/math]
[math]\int \sec^2 x \, dx = \tan x + C[/math]
[math]\int \csc^2 x \, dx = -\cot x + C[/math]
[math]\int \sec{x} \, \tan{x} \, dx = \sec{x} + C[/math]
[math]\int \csc{x} \, \cot{x} \, dx = - \csc{x} + C[/math]
[math]\int \sin^2 x \, dx = \frac{1}{2}(x - \sin x \cos x) + C[/math]
[math]\int \cos^2 x \, dx = \frac{1}{2}(x + \sin x \cos x) + C[/math]
[math]\int \sin^n x \, dx = - \frac{\sin^{n-1} {x} \cos {x}}{n} + \frac{n-1}{n} \int \sin^{n-2}{x} \, dx[/math]
[math]\int \cos^n x \, dx = \frac{\cos^{n-1} {x} \sin {x}}{n} + \frac{n-1}{n} \int \cos^{n-2}{x} \, dx[/math]
[math]\int \tan^{-1}{x} \, dx = x \, \arctan{x} - \frac{1}{2} \ln{\left| 1 + x^2\right|} + C[/math]


Hiperpoličke funkcije:

[math]\int \sinh x \, dx = \cosh x + C[/math]
[math]\int \cosh x \, dx = \sinh x + C[/math]
[math]\int \tanh x \, dx = \ln |\cosh x| + C[/math]
[math]\int \mbox{csch}\,x \, dx = \ln\left| \tanh {x \over2}\right| + C[/math]
[math]\int \mbox{sech}\,x \, dx = \arctan(\sinh x) + C[/math]
[math]\int \coth x \, dx = \ln|\sinh x| + C[/math]


Inverzne hiperboličke funkcije:

[math]\int \sinh^{-1} x \, dx = x \sinh^{-1} x - \sqrt{x^2+1} + C[/math]
[math]\int \cosh^{-1} x \, dx = x \cosh^{-1} x+ \sqrt{x^2-1} + C[/math]
[math]\int \tanh^{-1} x \, dx = x \tanh^{-1} x+ \frac{1}{2}\log{(1-x^2)} + C[/math]
[math]\int \mbox{csch}^{-1}\,x \, dx = x \mbox{csch}^{-1}\ x+ \log{\left[x\left(\sqrt{1+\frac{1}{x^2}} + 1\right)\right]} + C[/math]
[math]\int \mbox{sech}^{-1}\,x \, dx = x \mbox{sech}^{-1}\ x- \tan^{-1}{\left(\frac{x}{x-1}\sqrt{\frac{1-x}{1+x}}\right)} + C[/math]
[math]\int \coth^{-1} x \, dx = x \coth^{-1} x+ \frac{1}{2}\log{(x^2-1)} + C[/math]


Određeni nepravi integrali:

[math]\int_0^\infty{\sqrt{x}\,e^{-x}\,dx} = \frac{1}{2}\sqrt \pi[/math]
[math]\int_0^\infty{e^{-x^2}\,dx} = \frac{1}{2}\sqrt \pi[/math]
[math]\int_0^\infty{\frac{x}{e^x-1}\,dx} = \frac{\pi^2}{6}[/math]

[math]\int_0^\infty{\frac{x^3}{e^x-1}\,dx} = \frac{\pi^4}{15}[/math]

[math]\int_0^\infty\frac{\sin(x)}{x}\,dx=\frac{\pi}{2}[/math]
[math]\int_0^\frac{\pi}{2}\sin^n{x}\,dx=\int_0^\frac{\pi}{2}\cos^n{x}\,dx=\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot n}\frac{\pi}{2} --- gdje je {n \ge 2}[/math]
[math]\int_0^\frac{\pi}{2}\sin^n{x}\,dx=\int_0^\frac{\pi}{2}\cos^n{x}\,dx=\frac{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (n-1)}{3 \cdot 5 \cdot 7 \cdot \cdots \cdot n} --- ako je {n} paran i cijeli broj i {n \ge 3}[/math]

[math]\int_0^\infty x^{z-1}\,e^{-x}\,dx = \Gamma(z)[/math]

[math]\int_{-\infty}^\infty e^{-(ax^2+bx+c)}\,dx=\sqrt{\frac{\pi}{a}}\exp\left[\frac{b^2-4ac}{4a}\right] [/math]

[math]\int_{0}^{2 \pi} e^{x \cos \theta} d \theta = 2 \pi I_{0}(x) [/math]

[math]\int_{0}^{2 \pi} e^{x \cos \theta + y \sin \theta} d \theta = 2 \pi I_{0} \sqrt{x^2 + y^2} [/math]

Please Prijava or Kreiraj račun to join the conversation.

Moderators: Sabrija.pmfexpx2
Time to create page: 0.087 seconds